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A novel representation is proposed of the liquid state in a microcavity, the 
collective nature of that state being taken into account. In this case a microin- 
clusion undergoing melting is described as a single two-level system. The phase 
transition of melting in a close-packed system of such inclusions embedded in an 
elastic medium is described rigorously within the framework of the self-con- 
sistent approach. When an additional intermediate premelting state is taken into 
account, the curve of the steady-state phase transition with a critical point that 
happens on the phase diagram can be transformed in different ways, depending 
on the values of the specific parameters. In the simplest case shortening of the 
straight line takes place; bending is also possible. There is a region of the 
parameters where the critical line is split. In the latter case the existence of 
the triple point is also possible. The results obtained are in agreement with the 
experimental data. 

KEY WORDS: Thermodynamics; inclusion; melting; phase diagram; critical 
point; triple point. 

1. I N T R O D U C T I O N  

C o m p o u n d s  wi th  m i c r o i n c l u s i o n s  are  in te res t ing  m o d e r n  ma te r i a l s  wi th  

respect  to the i r  phys ica l  p roper t i es .  In  pa r t i cu la r ,  subs tances  in wh ich  finely 

d i spe r sed  inc lus ions  of  a di f ferent  m a t e r i a l  a re  a r r a n g e d  regu la r ly  are  of  

in te res t  at present .  (~ /The  di f ference of  the  phys ica l  p rope r t i e s  of  the  e m b e d -  

ded m a t e r i a l  gives  rise to  the  fact  tha t  eve ry  c o r r e s p o n d i n g  c o m p o u n d  as a 

w h o l e  can  man i fe s t  i tself  as a m i x t u r e  of  the  c o n s t i t u e n t  c o m p o n e n t s .  T h e  

effect of  m e l t i n g  is typica l ,  wi th  the  a p p r o p r i a t e  m e l t i n g  t e m p e r a t u r e s  of  the  

m a t r i x  a n d  the  inc lus ions  be ing  different.  
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If we restrict ourselves to the case of a matrix with a higher melting 
temperature, then the process of melting of the embedded particles will be 
regarded as the partial melting of a solid. Here the observed form of the 
thermodynamic properties will be dominated by conditions external to the 
inclusions undergoing the melting. Indeed, if the system involved is free at a 
given external pressure, then, as is well known, it will exist as a single phase 
both above and below the melting temperature, i.e., the entire melting 
process happens just at the melting point. On the other hand, if the volume 
of our system is fixed, then the vicinity of the phase transition is charac- 
terized by the temperature range where both of the phases, liquid and solid, 
are coexistent/2) The same behavior, albeit in a significantly narrower tem- 
perature interval, seems to be expected when the volume of the material 
suffering the melting is restricted by elastic external systems. In particular, 
such a picture must arise for the process of melting sufficiently large 
inclusions embedded in an elastic matrix, so that the coexistence of the two 
phases can be realized within every separate inclusion. 

In the present paper we consider the opposite limiting situation, when 
the size of the particles included is negligibly small, so that the coexistence 
of the two phases within the same particle is impossible. Here the elastic 
matrix plays the predominant role in two aspects: A temperature range 
arises where the included particles exist simultaneously, as an ensemble, in 
both states, solid and liquid. A definite quantitative correlation between the 
total volumes of those states also takes place. Thus, the partial melting in 
such a system will manifest itself as a cooperative phenomenon, which, for 
example, is similar to the melting of sublattices in superionic crystals/31 
Our situation can be regarded as an intermediate case dividing the 
possibility of the mixture of two different compounds and a homogeneous 
alloy in the region where it is eutectic. 

In the present paper the task of the thermodynamic description of the 
system of microinclusions has been rigorously solved by means of a 
modification of the model of Ref. 4. Hence, our system can be regarded as 
another possible way of realizing an isomorphic phase transition. (5) Despite 
the model character of the system considered, there is a beautiful example 
of its experimental realization (6) where the regularly distributed cavities in 
a zeolite specimen are filled by some metal. The thermodynamic results of 
the present paper are in agreement with the experimental data. 

2. M O D E L  OF THE STATES OF A M I C R O I N C L U S I O N  

As the model at hand, we consider an elastic matrix containing 
regularly packed, spherical (for simplicity) cavities of radius R. Atoms 
filling those cavities are also assumed to have the spherical shape. It is 
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impor tan t  that  a bulk specimen consisting of such a toms must  in general 
be characterized by a rather high symmetry.  (71 Then the solid state of the 
above system consisting of a few spherically symmetric  a toms must  
natural ly be realized as the symmetric  configurat ion of spheres close 
packed in an admissible cavity as well. Inasmuch  as the part icipat ion of  all 
the a toms is assumed to be necessary in the process of compos ing  the 
crystalline state due to the condi t ion that  the simultaneous existence of 
different phases is not  admit ted in the same cavity, all those identical a toms 
must  stay in equivalent positions. In particular, they must  stay same 
distance from the center of the cavity and therefore belong to one coor-  
dination sphere, as shown in Fig. la. It is obvious here that  the appropr ia te  
number  no of the a tomic positions can be equal to 4, 6, 8, or 12, so that  the 
centers of those a toms are located at the vertices of a tetrahedron,  an 
octahedron,  a cube, or an icosahedron,  respectively. Note  that  at least the 
first three possibilities are natural  for cubic crystal symmetry.  (7) As far as 
the molten state is concerned, it must  be geometrically stable. On  the other 
hand, it must  differ drastically from the crystalline state and be of  higher 
symmetry.  

As the simplest realization of the above conditions, the molten state 
may naturally be described by a configurat ion where the spherical a toms 
belong to two coordina t ion  spheres so that  one of the a toms is located at 
the center of  the cavity, as shown in Fig. lb. The number  nt of the a tomic  
positions in the liquid state can be calculated as three a toms along the 

I 
l l I J / \ 

Fig. 1. Central cross section of a spherical cavity of radius R. (a) The case of the solid state 
for n o = 8. The cross section is orientated in the plane of two cubic body diagonals. The inner 
sphere of radius r is plotted by the broken line. (b) The case of the two coordination spheres 
describing the liquid state. Here r = a; the broken curves show the circles that are the loci of 
the centers of the "side" atomic positions, the length of those circles describing qt. 
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polar axis plus the number of atoms that can be arranged along the two 
independent parallels of latitude, as also shown in Fig. lb. It is then equal 
to n t=  13.2. Providing all the atomic positions are occupied in the solid 
state, the degree of degeneracy of the solid state is equal to qo = 1, the iden- 
tity of all the atoms being taken into account. For the liquid state the value 
of qt must be calculated taking account of the fact that the atomic position 
in the center of the cavity must be occupied. As a result, qt is of the form 

F(n,) (1) 
qt F ( n t _  no + l )(no _ l ) ? 

where the gamma function F(n) arises as the result of exhausting all 
possible atomic arrangements, the relationship F(n + 1 ) = nF(n) being used. 

Note that the rather large deformation of the constituent atoms hap- 
pens in the liquid state. Indeed, we assume that the atoms in the solid state 
are undeformed and fill the cavity without any gap, the configuration of a 
cube being, for definiteness, realized there. Then the possibility of forming a 
denser symmetrical configuration such that the same volume of the cavity 
can contain more atoms may be constructed in such a way that one of the 
atoms occurs in the center of the cavity inasmuch as this central position is 
forbidden in the former solid state. The important peculiar feature of the 
new configuration is its stability even in the case when the number of 
atoms in the cavity is less than the total number n~ admitted by that con- 
figuration. In particular, it is acceptable for the number n o of atoms to 
correspond to the solid state. In the latter case the new configuration may 
be treated as the excited state of the system of atoms in the cavity. This 
excited state is characterized by the very high mobility of atoms due to the 
large number of unoccupied new atomic positions (n~ > no) and therefore it 
may be regarded as the liquid state in accordance with the above 
assumption. The large atomic deformation is the direct geometric con- 
sequence of the atomic reconstruction discussed. 

Therefore the phase transition between both phases mentioned above 
seems to be possible only due to the extremely large value of q~ of the 
corresponding degeneracy (qt~> 1). The appropriate values of q~ and the 
outer (R) and inner (r) radii of the coordination sphere in the solid state, 
which are measured in units of the atomic radius a, for different n o are 
listed in Table I. The obvious condition r < a leads to the conclusion that 
there is the only admissible coordination sphere. Due to this condition, the 
given set of magnitudes of no is complete. 

The values of the total energy of the atomic states in the cavity can be 
written in the form 

Eo = Eo + go A V (2) 

E I = E t +  g ~ A V  (3) 
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Table I. The Radii R and �9 Describing the Spherical Cavity a and the Degree ql 
of Degeneracy of the Liquid State Relative to the Corresponding Sol id S ta te  
for Di f ferent  Symmetr ic  Arrangements of the Admissible A t o m i c  Pos i t ions,  

Specif ied by Their Total Number  n o 

n o 4 6 8 12 13.2 
R( + ) , r ( - - )  1.2247 • 1 1.4142 • 1 1.7321 • l 1.9175 • 1 2 • 1 
q~ 232.83 879.96 937.69 18.39 1 

" Expressed in terms of the radius a of the constituent atoms. 

Here E 0 and E t are the values of the energy for a cavity of some definite 
radius R (Eo ~ E~), and go and gt describe the appropriate changes in those 
energies for a small value A V of excess volume of the cavity. The fact that 
the spherical shape of the cavity is unchanged is the restriction of our 
model. It is natural to assume that the following inequalities hold: 

gl < go < 0 (4) 

Inasmuch as expressions (2) and (3) determine the energy values of a 
microscopic object that can exist in two states, depending on its local 
volume, it is convenient to express the variation of that volume in terms of 
the strain tensor for the corresponding elastic environment. Here the elastic 
medium considered is, for simplicity, assumed to be isotropic. On the other 
hand, it is convenient to describe both states of the microinclusion with the 
help of the Ising variable t /=  _+ 1. 

Within the framework of the given model the possibility of some 
premelting state can also be taken into account. It is obvious that such a 
state must be distinguished from the ground crystalline state by some 
additional atomic positions treated as vacancies. Therefore, the above sym- 
metric states with the total number  of atomic positions nj greater than the 
value of no of the ground state involved can be filled only partly by the 
constituent atoms and may thus naturally be regarded as premelting ones. 
It is useful to note at this stage that there may be several states in question. 
For simplicity, from now on we restrict ourselves to the case of no = 8, so 
that only the intermediate state with n 1 = 12 among all the completely sym- 
metric states above may be regarded as the premelting state. Similar to 
expressions (2) and (3), this state can be described by the parameters E 1 
and gl- The appropriate  degree of degeneracy is equal to ql = 495. 

On using the order parameter  t/, the total energy of the ensemble of 
atoms in the cavity can be represented in the form 

E = E e + J0r /+  Jl  t/2 _1_ (t + gt/) u~  (5) 
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where 

rh [-Ez(1 + q~)-- E0(1 - t/~)] - 2 E ~  
E g -  2(1 -~/12) (6) 

J0 = �89 Eo) (7) 

E,(1 + t/~) + Eo(1 -- ql) - 2E1 
J1 = 2(1 - t/~ 2) (8) 

t =  �89 go) Vo (9) 

g = �89 go) V0 (10) 

Here Vo = 4~R3/3 is the volume of the cavity, u=y is the strain tensor at the 
place where the cavity is located, and summation over repeated tensor 
indices is supposed. The special form (5) of the expression for the local 
energy is suitable for what follows. In this case the third intermediate 
discrete value ~/1 of the parameter q is of the form 

2 g l -  g t -  go 
~ 1 -  (11) 

g l -  go 

which is chosen from the condition that after substituting expression (11) 
into formula (5), the latter must reduce to E 1 + gl AV. 

The extension of the description proposed to the case of several 
possible premelting states can be realized immediately. 

3. T H E R M O D Y N A M I C S  OF A SYSTEM OF 
M I C R O I N C L U S I O N S  IN AN ELASTIC M A T R I X  

Let the above cavities containing the microinclusions form a regular 
close-packed structure embedded in a uniform and isotropic elastic medium 
in such a way that direct contacts between different inclusions are absent. 
The total Hamiltonian consists of two parts: The first is the energy of 
microinclusions located at the sites of the regular lattice, which are num- 
bered by i and the total number of which N tends to infinity. This part can 
be expressed as the sum of the terms written in the form (5). The second 
part is the energy of the elastic matrix. Thus, we have 

H = H i . c +  H e (12) 

Oinc = 2 lEg -I- Jo~i -~ Jl t~ 2 -~ (t + gqi) u~(r , ) ]  (13) 

He= [2/2u~(r)+ #u]7(r)] dV (14) 
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i.e., the deformation originated by the reconstruction in the cavities [for- 
mula (13)] is described by the usual quadratic form of the deformational 
energy. 

Here r i is the radius vector of the ith cavity; the sum over i is carried 
out over all the cavities. The expression for H e is represented in the con- 
tinuous form, (8) 2 and # are the elastic moduli, u~(r) is the strain tensor at 
the point r, and the integration is carried out over the volume V of the 
matrix containing the lattice of inclusions. 

On making use of formula (12), the thermodynamic potential q) of the 
system at hand can be written in the form 

~0 = V + ~ u~ +/~u~ + P ~  + ~0, 

the sequence of the corresponding transformations being described in detail 
in the Appendix. Here T =  1/p is the temperature measured in energy units, 
v = V/N, P = p + t/v, p is the external pressure, and q0~ is the regular ther- 
modynamic potential of the acoustic phonons; the mean values t ~  of the 
strain tensor components are found from the condition that ~0 be a 
minimum; and all the terms containing g2 appear as the result of averaging 
over the phonon degrees of freedom, (4/ the theorem of Ref. 9 being taken 
into account. In expression (15) the sum over all the configurations of the 
local order parameters r/i is calculated immediately. On making use of the 
calculated values of ~ ,  expression (15) takes the form 

~o = (Po - �89 ln(4qoql ) + �89 ) 2  __ T N  ln(ch p + U) (16) 

where 

( q0o=N Egq- 2 K j + ~ o .  (17) 

K=~+2#/3 (18) 

G = - -  (19) 
v 2 + 2 #  

gP 
J = --~ -- Jo + a ( t l  ) (20) 
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p = flJ+ �89 ln(ql/qo) (21) 

ql end (22) 
Q 2(qoq,)i/2 

D = ( 1 - - ~ )  J1 2v(~+2~) (23) 

U =  Q exp(fiJq~) (24) 

The mean value (r/) of the order parameter is found by minimizing 
expression (16), formula (20) being taken into account. As a result, ( 7 )  is 
determined by a self-consistent equation of the form 

shp+r /1U 
( ' 7 ) -  c h p + U  (25) 

The dependences (16)-(25) provide the complete description of the ther- 
modynamics of melting in question. 

4. PHASE D I A G R A M S  

The self-consistent solution for (t7) that follows from Eq. (25) has the 
usual character (4) until the right-hand side of Eq. (25) as a function of p is 
specified by the only point of inflection. For simplicity, throughout this 
paper we restrict ourselves to the condition ~/1 = 0, which corresponds to 
the symmetric case. Then the phase transition line is straight, as shown in 
Fig. 2a. The other situation arises when there are three points of inflection 
in the dependence of the right-hand side of Eq. (25) on p. It is important to 
note here that the splitting of the phase transition occurs when the follow- 
ing inequality is satisfied: 

D > -0.4655G (26) 

The corresponding phase diagram is plotted in Fig. 2b. At the critical point 
the temperature is determined by the equation 

GQ2 (27) 
Tc = 4(Q2 _ 1 ) 

where the dependence Q(T) at T=  Tc is taken into account. 
Note that when the internal parameter D is changed out of the region 

where the two possible phases occur, the parametric condition of the 
appearance of the splitting of the phase transition describes initially only 
the immediate vicinity of the critical point in the plane of the external 
parameters. Therefore, apart from the two critical points, a triple point 
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must  also arise initially on the phase diagram. In the above case of  r/l = 0 
the triple point  takes place if both  the inequality 

D < 0.5G (28) 

and condi t ion (26) are realized simultaneously. The posit ion of  the triple 
point  is then specified by the equat ion 

ch p + _ _  Q = exp Tp2 (29) 
I + Q  2G 

The appropr ia te  phase d iagram is drawn in Fig. 3. 

0 
-r 

-1 

~ 
Fig. 2. Phase diagrams represented in the natural axes T= T/G, p= (gP/K--Jo)/G at (a) 
D/G= -0.6 or (b) D/G=0.6; rli =0 in both cases. The steady-state phase transitions and 
spinodals are depicted by the heavy and thin solid lines, respectively. There are critical points 
at (a) T= 0.3775, /~= -1.2916 or (b) 7"=0.2500, b=  -0.0597 and/~= -1.6514. The heavy, 
dashed line terminating at T= 1 is the steady-state phase transition line if the intermediate 
state is absent. 
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ii 

o'.2 

-1 

Fig. 3. The pattern of the phase diagram containing the triple point (T=0.1765, 
b = -0.6038) and the two critical points (T= 0.2539,/5 = -0.6593 and/5- -1.0781) at D = 0, 
t/1 = 0. The steady-state phase transition curves and spinodals are shown by the heavy and 
thin lines, respectively. The meaning of the heavy, dashed line is the same as in Fig. 2. The 
thin broken line points out the position of the point where the spinodals of the intermediate 
phase terminate (T= 0.1101). The asterisk labels the path (broken line at/5 = -0.63) along 
which the heat capacity is drawn in Fig. 4. 

The shapes of the boundaries  of instability of the metastable phases 
are determined by the joint  solution of Eq. (25) and the expression 

1 + [(1 +tl 2) ch p-2r/1 sh p]U=o (30) 
Z =- 1 - f i G  (ch p n t- U )  2 

which is the condi t ion that  the total derivative of the r ight-hand side of 
Eq. (25) with respect to ( q )  is equal to unity, i.e., the spinodals are 
specified by the points of tangency of bo th  sides of Eq. (25) as functions of 

( '7) .  
The corresponding curves are depicted in Figs. 2 and 3 as well. Note  

that  the character  of our  metastable regions in the vicinity of the triple 
point  (Fig. 3) is qualitatively similar to the case of a first-order phase 
transit ion close to a second-order  one. C1~ 
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At a fixed pressure the specific heat Cp and the isothermal com- 
pressibility 1/Kis are found upon performing the differentiations in 
expression (16) and are determined by the formulas: 

Cp 
N 

- fi2YZ { J +  [(1 

1 _ 3 V ( 2 + 2 #  1) 
K~s 4# \ EK 

Co+fl2Dy[(D+rhJ) ch p + J s h  p] 
N 

+ r/2)J+ r/1D ] ch p - (D + 2r/1J ) sh p'~ (31) 
) 

(32) 

where 
U 

Y -  (ch p + U) 2 (33) 

Z= flDGY(sh p - r l l ch  p) - J  
(34) 

Co is the regular part of the specific heat corresponding to q)o- The shape of 
the temperature dependence of the specific heat, which is considered in the 
region of the split phase transition in the manner pointed out in Fig. 3, is 
represented in Fig. 4. 

The important feature of the solution obtained is its metastable 
character, associated with the metastability of an intermediate state t/1 
relative to both the ground crystalline and the molten states, as is obvious 
from the discussion of Section 2. Thus, such an intermediate state may arise 
due to an entropy effect only. Furthermore, a regular description that does 
not contain the state q l also exists and is given by the above formulas with 
Q = 0, which coincide with the results of Ref. 4 in the latter case. The 
corresponding steady-state line of the phase transition can be obtained by 
continuing the critical straight line in Fig. 2a up to the value of T/G = 1. 

In addition to the formulas given above it is also instructive to obtain 
the expression for the jump of the enthalpy at the phase transition in the 
stable case. On the steady-state critical curve the jump of the enthalpy per 
cavity is as follows: 

Aw = TL(T) ln(qjqo) 

where the dependence L(T) is specified by the relationship 

(35) 

T 1 + L (36) 
z: = g d  in  1 

822/48/1-2-15 
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C -C o 

A/ 

3 

I 

0 OJ 0.'2 "~ 
Fig. 4. The heat capacity versus the temperature at D = 0 ,  ql =0 ,  /~= -0.63. The phase 

transitions occur at Z'=0.1807 and at T =  0.2130. 

In the case of the intermediate phase the jump of the enthalpy is not deter- 
mined by a simple formula similar to relationship (35). For  its calculation 
the general expression 

N w = N  w 0 -  J -  ( t / )  <t/) c h p + U  

for the enthalpy, which is a direct consequence of formula (16), must be 
used. Here Nwo is the regular contribution corresponding to ~o 0. 

Now we compare the results of the present paper with the experimen- 
tal data for the melting of cubic clusters consisting of eight atoms of 
metallic indium occupying the cavities of a zeolite matrix. (6) The structure 
of those clusters enables us to employ directly the obtained formulas for 
the case of the only intermediate state. Putting T c = 2 4 3 K ,  Aw~, 
41.6x 10-16erg/cavity in the case of t ; t=0 ,  and we see that the phase 
transition takes place in the vicinity of the critical point. Moreover, 
splitting of the phase transition can also occur with the corresponding 
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estimates G ~ 730 K and D ~ - 340 K not being in contradiction with our 
model representations, but the temperature range of splitting is very small 
there. 

5. C O N C L U S I O N  

The present results may be divided into two parts. First, based on the 
available experimental data, an attempt has been made to describe the 
model states specifying an idealized microinclusion in the process of 
melting. Despite the phenomenological character of the construction, the 
latter seems to be the reasonable origin, allowing us to obtain the predic- 
tion of the abnormally large statistical factors accompanying the process of 
melting, so that the phenomenon of melting may be treated as essentially 
local. As a result, the dependence of the states of a single microinclusion on 
the external parameters, which arises naturally in our consideration.,, 
enables us to describe those states with the help of a scalar order, 
parameter. 

The other results are connected with the investigation of the different 
possible types of phase diagram, depending on the parameters of the 
system. In the considered case of only one intermediate state, this state is 
the predominant one in some phase. However, the situation can arise that 
the appropriate phase is unstable and does not arise on the phase diagram. 
Then the phase diagram has a single critical line terminating at the critical 
point. This critical line is straight when r/1 = 0; otherwise it is curved. The 
stabilization of the intermediate phase gives rise to the splitting of the 
phase transition, so that a triple point can exist. The obvious extension of . 
this result to the case of several intermediate states, which is also the most 
typical case for the phenomenon of melting, is the prediction of the mul- 
tiple splitting of the phase transition, which happens in the ensemble of the 
corresponding microscopic systems embedded into the elastic medium. 
Note that taking account of additional intermediate states, which are 
metastable on the microscopic level, gives rise to a significant increase in 
the pressure of the critical point where the phase transition line terminates. 
This tendency can promote the possibility of observing experimentally the 
critical points in the solid system described. Note also that the prediction of 
the critical points does not contradict the process of melting for the systems 
involved inasmuch as the crystallization of microinclusions is not connec- 
ted with the creation of any long-range order in the crystallographic sense; 
the local mechanisms that give rise to a definite orientation of the solid 
cluster above are dropped here because they do not change the main 
results. 
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In conclusion we note that an important feature of the present 
approach is as follows: On one hand, the model in question can be 
calculated quite accurately. On the other hand, this model is very realistic, 
so that its direct practical realization is possible, as mentioned above. 

At this stage of discussion the following question arises: What is the 
field of application of the model? Is this restricted only to physical 
problems in the narrow class of special materials? We believe that the 
results give general grounds on which to understand many cooperative 
phenomena in heterostructures. 

A P P E N D I X  

All the calculations here are carried out following Ref. 4. The quan- 
tities r h and u~,e(r) may be expressed in terms of their Fourier transforms by 
the formulas 

t/(r) = ~ ~ t/k exp(ikr) (A1) 
k 

i ~ , ( k  k k 
u~(r) = u~ + 2--P775 k u~+k~u~)exp(ikr) (A2) 

Here the density r/(r) is connected with the local quantity qi by the 
relationship t /(r)= q jr for every vector r terminating in the ith unit cell, v 
is the volume of the unit cell, ~ is the mean value of the strain tensor, and 
u k is the Fourier transform of the displacement vector; the prime on the 
summation sign indicates that the term with k = 0 is omitted. (H) Indeed, 
there is no phonon corresponding precisely to k = 0. Strictly speaking, the 
summation in expression (A2) is carried out over a denumerable set of 
values of k, whereas the sum in expression (A1) is over the lowest N values 
of k of the same set (this is accomplished by a suitable choice of the boun- 
dary conditions). However, within the statistical accuracy, the difference 
between the above regions of summation may be ignored. 

The thermodynamic potential q) is of the form 

~o = - T i n  TrEexp( - f i l l -  flVpgt~)] (A3) 

where T =  1/fl is the temperature in energy units, p is the external pressure, 
and H is specified by formula (12); the trace is over all the configurations 
at hand. On substituting formulas (A1) and (A2) into expressions (13) and 
(14), we can rewrite formula (A3) in the form 
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~p= V + - ~ + # u ~ 7 + P f i ~  +~o~ 

- T l n T r { < e x p [ - ~ ( J o + g f t ~ ) ~ l i  
i 

~J,~qz--i~g~' (kuk) Yl_k]~ 1 (A4) 1 

i k ~ /  ) a 

Here P = p + t/v, and the formal procedure of separating the contribution 
of the noninteracting phonons (12) is carried out within the statistical 
accuracy. Here 

qo~ = - T l n  Tr[exp(-//H~)] (A5) 

Hu 2+2# ~, 
- 2 I(kuk)12 

k 

~Z' ( k2 lukl 2 -  I(kuk)l 2) + (A6) 
k 

Ha corresponds to Hamiltonian (14). As a result, the trace in formula (A4) 
is only over the configurations of r/i, whereas (-- . )a  denotes the average 
over the phonons described by the Hamiltonian (A6). 

Due to the parabolic form of the Hamiltonian (A6), after averaging, 
the exponential in expression (A4) takes the form 

I /~g2 ~ '  [r/kl2 ] (AT) exp -/~(J0 + g t / j  ~i r/i -/~J1 Zt r/~ + 2(2 + 2#) k 

The last term in the square brackets in expression (A7) may be transfor- 
med by adding and submitting the appropriate term with k = 0 into the 
form 

q ~ - ~  r/i (A8) 

For the further transformation of the trace in formula (A4), where 
expressions (A7) and (A8) are taken into account, it is useful to apply the 
following statistical identity(9): 

Tr {exp [NL ( 1 ~  ~ji ..... 1 ~  ~ i ) ]}  

x T r { e x p [ ~  ~?L((~I)0(~j)(~"))~ ]} ~g~ (A9) 
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where L is a differentiable function of n variables, and j = 1,..., n labels the 
physical quantities of interest. In our case n = 2, ~lt= qi, ~2i = ~/~, and the 
trace above converts into the form 

g2 

exp 2v(Z + 2#) 

x 2 ~ / i - f i  J, 2v(2+2# q~ (A10) 
i 

On replacing the trace in formula (A4) with expression (A10), we readily 
obtain formula (15) of interest. So the molecular field arises as a rigorous 
physical field. 

Note that the effect involved is the manifestation of a long-wavelength 
acoustic anomaly, which is described correctly by the Hamiltonian (A6). 
On the other hand, the corresponding spectrum is, strictly speaking, the 
long-wavelength part of the real spectrum. However, the corrections 
corresponding to the appropriate deviation of the real short-wavelength 
part of the spectrum from its linear extrapolation are rather small. (13) 
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